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Abstract. One of the most important creations of Analysis of the last century was Lebesgue
Integral, which remarkably extended Riemann Integral, solved within a few years the fundamental
problems of Integration Theory which gave a relevant impetus to Functional Analysis, Theory of Dif-
ferential Equations and Probability Theory. The basic point of this new theory was the introduction
of the notion of measurement. The Lebesgue measure of R is roughly a function whose domain is a
subset of R and whose contradiction is the set of nonnegative real numbers (joined with the symbol
+00). The length of a range, for example, is a measure, say L, defined over all ranges of the real line,
such that L(I) = b— a, where a and b, a < b, are the extremes of the range I and L([) = 400 if I is
not limited. Now, the L measure is defined for intervals only. It would be interesting to extend this
concept to other subsets of the line. In this work, the outer measure of a subset of R will be defined
and, with this measure, the notion of measurable set will be defined. Then the Lebesgue measure
is presented. Our main goal is to build a set of real numbers that cannot be measured with the
Lebesgue measure. We conclude that even extending the concept of interval length to other subsets
does not encompass them all.
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